Get All Weeks Quantitative Foundations for International Business Quiz Answers
Quantitative Foundations for International Business Quiz Answers
Week 1 Quiz Answers
Quiz 1: Equations: Practice Exercises
Q1. If 4x=74x=7, what is xx?
Please give your answer as a fraction, not as a decimal (i.e. 1/2, not 0.5)
Preview will appear here…
Enter math expression here
Q2. If x-5=16x−5=16, what is xx?
Preview will appear here…
Enter math expression here
Q3. If 3x+5=73x+5=7 , what is xx?
Please give your answer as a fraction, not as a decimal (i.e. 1/2, not 0.5)
Preview will appear here…
Enter math expression here
Quiz 2: Equations: Summative Exercises
Q1. If \frac32x+1=4
2
3
x+1=4, what is xx?
Preview will appear here…
Enter math expression here
Q2. If \frac{y}{4}=16
4
y
=16, what is yy?
Preview will appear here…
Enter math expression here
Q3. If 16y–6y+2y=2416y–6y+2y=24, what is yy?
Preview will appear here…
Enter math expression here
Q4. If 4y+5=2-8y4y+5=2−8y, what is yy?
Please give your answer as a fraction, not as a decimal (i.e. 1/2, not 0.5)
Preview will appear here…
Enter math expression here
Q5. Given I=PRTI=PRT, how would you calculate PP?
P=RTIP=RTI
P=\frac{RT}{I}P=
I
RT
P=\frac{I}{RT}P=
RT
I
P=\frac{TI}{R}P=
R
TI
Q6. Solve for R in the formula M=P(1+TR)M=P(1+TR)
R=\frac{M-P}{PT}R=
PT
M−P
R=PTMR=PTM
R=\frac{M-T}{PT}R=
PT
M−T
R=\frac{P}{M-T}R=
M−T
P
Q7. Which of the following proportions are true? Use the method of cross products to find the answer, and select all that apply to
\frac{6}{5}=\frac{12}{10}
5
6
=
10
12
\frac{2}{3}=\frac{9}{16}
3
2
=
16
9
\frac{2}{3}=\frac{7}{18}
3
2
=
18
7
\frac{2}{4}=\frac{5}{10}
4
2
=
10
5
Q8. Find xx to solve the proportion \frac{3}{2}=\frac{x}{20}
2
3
=
20
x
Enter answer here
Quiz 3: Week 1: End of Week Quiz
Q1. A variable is an entity whose value can change, since it can take on different values.
- True
- False
Q2. When we try to find the solution of a system from the variables contained into the model, then these variables are endogenous variables.
- True
- False
Q3. The term constant indicates an entity which only sometime changes.
- True
- False
Q4. The set of the real number does not contain the negative fractions.
- True
- False
Q5. The constant which is along with a variable, indicates that sometime a variable can take a fixed value.
- True
- False
Week 2
Quiz 1: Summative Questions
Q1. What is the domain of g(x)=1-\sqrt{x+2}g(x)=1−
x+2
- D: {𝑥∈𝑅 𝑥≥+2}D:{x∈Rx≥+2}
- D: {𝑥∈𝑅 𝑥≥−2}D:{x∈Rx≥−2}
- D: {𝑥∈𝑅 𝑥≥+1}D:{x∈Rx≥+1}
- D: {𝑥∈𝑅 𝑥≥−1}D:{x∈Rx≥−1}
Q2. What is the range of g(x)=1-\sqrt{x+2}g(x)=1−
x+2
- {∀y∈{R\,such\,that}\,{y\ge 1} }{∀y∈Rsuchthaty≥1}
- {∀y∈R\,such\,that\,{y≤ -1} }{∀y∈Rsuchthaty≤−1}
- {∀y∈Rsuchthaty≤1}
- {∀y∈\,R\, such\, that\, {y\ge 2} }{∀y∈Rsuchthaty≥2}
Q3. Find the domain of the function ff defined by the formula f(x)=\frac{3x+6}{x-2}f(x)=
x−2
3x+6
- D= {𝑥∈𝑅/𝑥≠3}D=x∈R/x
- D= {𝑥∈𝑅/𝑥≠-2}D=x∈R/x
- D= {𝑥∈𝑅/𝑥≠6}D=x∈R/x
- D= {𝑥∈𝑅/𝑥≠2}D=x∈R/x
Q4. Find xx to show that the number 5 is in the range of ff in this equation: \frac{3x+6}{x-2}=5
What is xx?
Preview will appear here…
Enter math expression here
Q5. Which line in the graph below shows the graph of y=x-1y=x−1?
- A
- B
- C
- D
Q6. Which line in the graph below shows the graph of y=x-\frac{1}{3}y=x−
- A
- B
- C
- D
Q7. Given the equation y=3-5xy=3−5x, if x=1x=1, Calculate Y?
Preview will appear here…
Enter math expression here
Q8. Sketch or imagine the graph that satisfies the equation y=2+4xy=2+4x. What qualities would it have?
- A straight line that slants upwards to the right
- A U shaped curved line crossing the xx axis
- A U shaped curved line crossing the yy axis
- A straight line that slants upwards to the left
Quiz 2: End of Week Quiz
Q1. A function is a correspondence between two sets of elements such that to each element in the first set there corresponds one or more elements in the second set.
- True
- False
Q2. The domain of a function 𝑓(𝑥)=√(𝑥^2+1)f(x)=√(x
2
+1) is: D={𝑥|𝑥≤−1∨ 𝑥≥1}D={x∣x≤−1∨x≥1}
- True
- False
Q3. The range of a function 𝑓(𝑥)=𝑥^2−1f(x)=x
2
−1 is: R={𝑦|𝑦 ≥−1}R=y∣y≥−1
- True
- False
Q4. 𝑓(𝑥)=𝑥^3+2𝑥^2−4𝑥f(x)=x
3
+2x
2
−4x; If 𝑥=2x=2, then 𝑓(2)=8f(2)=8
- True
- False
Q5. By sketching the graph of the function f(𝑥) =𝑥^2+1f(x)=x
2
+1, we obtain a straight line.
- True
- False
Week 3
Quiz 1: Summative Questions
Q1. Which of the following is correct if you differentiate f(x)=5f(x)=5?
- f'(x)=5^{-1}f′(x)=5−1
- f'(x)=0f′(x)=0
- f'(x)=\sqrt5f′(x)=5
Q2. If you differentiate y=x^3+4x^2+3x^3+7x+4y=x3+4x2+3x3+7x+4, which of the following is correct?
- y’=3x^2+8x+9x^2+7+4=16x^2+8x+11y′=3x2+8x+9x2+7+4=16x2+8x+11
- y’3x^2+4x^2+9x^2+7=16x^2+7y′3x2+4x2+9x2+7=16x2+7
- y’=3x^2+8x+9x^2+7=12x^2+8x+7y′=3x2+8x+9x2+7=12x2+8x+7
Q3. Given y=-3+3x-\frac{4}{2}x^4-x^3y=−3+3x−24x4−x3, find the derivative.
- y’=3-8x^3-3x^2y′=3−8x3−3x2
- y’=3-\frac{16}{8}x^3-3x^2y′=3−816x3−3x2
- y’=3-2x^3-3x^2y′=3−2x3−3x2
Q4. Differentiate h(x)=f(x)\times{g(x)}h(x)=f(x)×g(x), where f(x)=(3x^4+x^2)f(x)=(3x4+x2) and g(x)=(6x^5-x^2)g(x)=(6x5−x2)
- (12x^3+2x)\times(6x^5-x^2)+(3x^4+x^2)\times(30x^4-2x)(12x3+2x)×(6x5−x2)+(3x4+x2)×(30x4−2x)
- (12x^3+2x)\times(30x^4-2x)+(3x^4+x^2)\times(6x^5-x^2)(12x3+2x)×(30x4−2x)+(3x4+x2)×(6x5−x2)
- (12x^3+2x)\times6x^5-x^2)+(3x^4+x^2)\times(30x^4-2x)(12x3+2x)×6x5−x2)+(3x4+x2)×(30x4−2x)
Q5. Differentiate the following product of three factors:
- y=(x+2)(x+4)(x+5)y=(x+2)(x+4)(x+5)
- y’=\frac{d}{dx}(x+2)(x+4)\times(x+5)-(x+2)\times\frac{d}{dx}(x+4)(x+5)+(x+2)(x+4)y′=dxd(x+2)(x+4)×(x+5)−(x+2)×dxd(x+4)(x+5)+(x+2)(x+4)
- y’=\frac{d}{dx}(x+2)(x+4)\times(x+5)-(x+2)\times\frac{d}{dx}(x+4)(x+5)+(x+2)(x+4)\times\frac{d}{dx}(x+5)y′=dxd(x+2)(x+4)×(x+5)−(x+2)×dxd(x+4)(x+5)+(x+2)(x+4)×dxd(x+5)
- y’=\frac{d}{dx}(x+2)(x+4)\times(x+5)+(x+2)\times\frac{d}{dx}(x+4)(x+5)+(x+2)(x+4)\times\frac{d}{dx}(x+5)y′=dxd(x+2)(x+4)×(x+5)+(x+2)×dxd(x+4)(x+5)+(x+2)(x+4)×dxd(x+5)
Q6. Find the derivative of \frac{f(x)}{g(x)}=\frac{4x-5}{x+2}g(x)f(x)=x+24x−5
- \frac{4x+8-4x+5}{(x+2)}=\frac{13}{x+2}(x+2)4x+8−4x+5=x+213
- \frac{4x+8-4x+5}{(x+2)^2}=\frac{13}{(x+2)^2}(x+2)24x+8−4x+5=(x+2)213
- \frac{4x+8-4}{(x+2)^2}=\frac{4x+4}{(x+2)^2}(x+2)24x+8−4=(x+2)24x+4
Q7. Given f(x)=\sqrt6f(x)=6, differentiate the function
- f'(x)=0f′(x)=0
- f'(x)=2\times\sqrt6f′(x)=2×6
- f'(x)=6f′(x)=6
Quiz 2: End of Week Quiz
Q1. The product rule is ℎ’(𝑥) = 𝑓’(𝑥) × 𝑔(𝑥) + 𝑓(𝑥) × 𝑔’(𝑥)h’(x)=f’(x)×g(x)+f(x)×g’(x)
- True
- False
Q2. Multiplicative
constants are preserved; additive
constants disappear
- True
- False
Q3. The second derivative of the function 𝑓^′ (𝑥)=𝑥^2+3𝑥f
′
(x)=x
2
+3x is 5.
- True
- False
Q4. The function 𝑓(𝑥)=𝑥^2+3f(x)=x
2
+3 is increasing per x<0x<0
- True
- False
Q5. If f(x2 ) ≥ f(x1)f(x2)≥f(x1) whenever x2> x1x2>x1, then ff is increasing in A
- True
- False
Week 4
Quiz 1: Summative Questions
Q1. A transpose matrix is denoted by A^{-1}A
−1
- True
- False
Q2. 𝑘(𝐴+𝐵)=𝑘𝐴+𝑘𝐵k(A+B)=kA+kB
- True
- False
Q3. A is a matrix 3 X 2, B is a matrix 3 X 2, the the matrix product AB is defined.
- True
- False
Q4. A is a matrix 3 X 2, B is a matrix 2 X 3. Then AB is a matrix 2 X 2
- True
- False
Q5. A+(B+C)= (A+B)+C
- True
- False
Quiz 2: End of Course Quiz
Q1. Given two matrices, A^{m,n}A
m,n
and {\;}B^{p,r}B
p,r
:
- The sum A+BA+B is always defined
- The sum A+BA+B is never defined
- The sum A+BA+B is defined only is m=pm=p and n=rn=r
Q2. Given y=2x^3+x^2-4x+10y=2x
- f′′(1)=−4
- increases for x>-1x>−1 v x>\frac{2}{3}x>32
- f'(x)=3x^2+2x-4f′(x)=3x2+2x−4
Q3. If 15x-3x=-10-515x−3x=−10−5
- x=125
- x=-\frac{5}{4}x=−45
- x=\frac{5}{4}x=45
Q4. Given y=x^3+2x^2+10x+1y=x
- The function always increases
- The function always increases {\forall}x ∈R∀x∈R
- f'(x)=3x^2+4x+11f′(x)=3x2+4x+11
Q5. If 2-2x=4x+142−2x=4x+14, then what is xx?
- x=-2x=−2
- x=6x=6
- x=2x=2
Q6. Given the function y=x2-3x+1y=x2−3x+1…
- Increases for x<\frac{3}{2}x<23
- f'(x)=2x+3f′(x)=2x+3
- The range is \{y ∈R|y {\le}-\frac{5}{4}{y∈R∣y≤−45
Q7. If 12x+8=4-20x12x+8=4−20x…
- Increases for x<\frac{3}{2}x<23
- f'(x)=2x+3f′(x)=2x+3
- The range is \{y
Q8. Given the function y=3x^3+2xy=3x
- It always increases
- f'(-1)=-7f′(−1)=−7
- f”(x)=9xf′′(x)=9x
Q9. If 6x+3-18x=396x+3−18x=39…
- x=\frac{3}{2}x=23
- x=6x=6
- x=-3x=−3
Q10. Given the function y=5x+1y=5x+1, then…
- D=R
- f(-2)-9f(−2)−9
- f”(x)=5f′′(x)=5
Q11. If 10x+2-12+20=1610x+2−12+20=16, then…
- D=RD=R
- f(-2)-9f(−2)−9
- f”(x)=5f′′(x)=5
Q12. Given the function y=2x^2-1y=2x
- x=\frac{3}{5}x=53
- x=-\frac{3}{5}x=−53
- x-4x−4
Q13. If 3x+2=2x+13x+2=2x+1, what is xx?
- x=53
- x=1x=1
- x=-1x=−1
Q14. Given the function f(x)=3x^5-12x^4+3x^2f(x)=3x
- f'(x)=15x^4-48x^3+6xf′(x)=15x4−48x3+6x
- f'(x)=13x^4+12x^3=3xf′(x)=13x4+12x3=3x
- f'(x)=5x^4-4x^3+2xf′(x)=5x4−4x3+2x
Q15. If 2x-2+8=3x-22x−2+8=3x−2, then…
- x=−8
- x=\frac{8}{5}x=58
- x=8x=8
Q16. Given the function y=\frac{x+2}{x+1}y=
f'(x)=1f′(x)=1
f'(x)=(x+1)-(x+2)f′(x)=(x+1)−(x+2)
f'(x)=\frac{(x+1)-(x+2)}{(x+1)^2}f′(x)=(x+1)2(x+1)−(x+2)
Q17. If -6x+6=3x+9-10x-7−6x+6=3x+9−10x−7,then…
- f′(x)=3⋅1=3
- f'(x)=(3x-1)+(x+5)f′(x)=(3x−1)+(x+5)
- f'(x)=(3x-1)+3(x+5)f′(x)=(3x−1)+3(x+5)
Q18. Given the function y=(x+5)(3x-1)y=(x+5)(3x−1)…
- f′(x)=3⋅1=3
- f'(x)=(3x-1)+(x+5)f′(x)=(3x−1)+(x+5)
- f'(x)=(3x-1)+3(x+5)f′(x)=(3x−1)+3(x+5)
Q19. If 8+2x-10=1-3x-48+2x−10=1−3x−4, then…
- x=-\frac{1}{5}x=−51
- x=-6x=−6
- x=6x=6
Q20. Given the function x^2-xx
- It always increases
- It always decreases
Q21. Which of the following inequalities is correct?
- D[f(x)+g(x)]=f′(x)+g(x)+g′(x)+f(x)
- D[kf(x)]=0D[kf(x)]=0
- D[f(x)\cdot{g(x)}]=f'(x)\cdot{g(x)}+g'(x)\cdot{f(x)}D[f(x)⋅g(x)]=f′(x)⋅g(x)+g′(x)⋅f(x)
Q22. Given the function y=x^3+x^2+2x+3y=x
- It is always increasing
- It is always decreasing
- It has a maximum but it does not have a minimum
Q23. Given the linear function y=3x-1y=3x−1, then…
D=\{x ∈ R/x \neq \frac{1}{3}\}D={x∈R/x=31}
f”(x)=2f′′(x)=2
\frac{\Delta y}{\Delta x}=3ΔxΔy=3
Q24. Given the matrices A [n \times m]A[n×m] and K[p \times r]K[p×r]…
- the product is defined only if m=pm=p
- the product is always defined
- the product is never defined
Q25. Given the function f(x)=x^2+5x+6f(x)=x
- f(x)f(x) decreases per x>-\frac{5}{2}x>−25
- D=RD=R
- f(x)f(x) increases per x<2x<2 or x>3x>3
Q26. Given the function f(x)=x^3-2x+1f(x)=x
- f”(x)=3x-2f′′(x)=3x−2
- f(x)=3x^2-2xf(x)=3x2−2x
- f(1)=0f(1)=0
Q27. In order to take the transpose of a matrix…
- The rows of a matrix becomes the columns of the new matrix
- We change the order of the rows
- We change the order of the columns
Q28. Given the function f(x)=5x^2-3x+1f(x)=5x
- It increases for x>\frac{3}{10}x>103
- It always increases
- It always decreases
Q29. Given the function f(x)=(x+1)(2x+3)f(x)=(x+1)(2x+3)
- f'(x)=4x+5f′(x)=4x+5
- f'(x)=2f′(x)=2
- f'(x)=2x+3(2x+2)f′(x)=2x+3(2x+2)
Q30. Given the following two matrices
What will their matrix product be?
- (3 x 1) vector
- (2 x 2) matrix
- The product is not defined
Quantitative Foundations for International Business Course Review:
In our experience, we suggest you enroll in Quantitative Foundations for International Business courses and gain some new skills from Professionals completely free and we assure you will be worth it.
Quantitative Foundations for International Business course is available on Coursera for free, if you are stuck anywhere between a quiz or a graded assessment quiz, just visit Networking Funda to get Quantitative Foundations for International Business Quiz Answers.
Get All Course Quiz Answers of International Business Essentials Specialization
Professional Skills for International Business Quiz Answers
Management Skills for International Business Quiz Answers
Quantitative Foundations for International Business Quiz Answers
Statistics for International Business Coursera Quiz Answers
International Business Environment Coursera Quiz Answers