# Data Analysis with Python Coursera Quiz Answers – 100% Correct Answers

## All Weeks Data Analysis with Python Coursera Quiz Answers

Learn how to analyze data using Python. This course will take you from the basics of Python to exploring many different types of data. You will learn how to prepare data for analysis, perform simple statistical analysis, create meaningful data visualizations, predict future trends from data, and more!

## Data Analysis with Python Coursera Quiz Answers

### Week 01: Importing Datasets

#### Practice Quiz: Understanding the Data

Q1. Each column contains a:

**attribute or feature**- different used car

Q2. How many columns does the dataset have?

**26**- 205

#### Practice Quiz: Python Packages for Data Science

Q1. What description best describes the library Pandas?

- Includes functions for some advanced math problems as listed in the slide as well as data visualization.
- Uses arrays as their inputs and outputs. It can be extended to objects for matrices, and with a little change of coding, developers perform fast array processing.
**Offers data structure and tools for effective data manipulation and analysis. It provides fast access to structured data. The primary instrument of Pandas is a two-dimensional table consisting of columns and rows labels which are called a DataFrame. It is designed to provide an easy indexing function.**

Q2. What is a Python library?

- A file that contains data.
**A collection of functions and methods that allows you to perform lots of actions without writing your code.**

#### Practice Quiz: Importing and Exporting Data in Python

Q1. What does the following method do to the data frame? **df** : **df.head(12)1 point**

**Show the first 12 rows of dataframe.**- Shows the bottom 12 rows of dataframe.

Q2. What task does the following lines of code perform?

path=’C:\Windows\…\ automobile.csv’

df.to_csv(path)

**Exports your Pandas dataframe to a new csv**file, in the location specified by the variable path.- Loads a csv file.

#### Practice Quiz: Getting Started Analyzing Data in Python

Q1. To enable a summary of all the columns, what must the parameter** include** be set to for the method described?

**df.describe(include=“all”)**- df.describe(include=“None”)

#### Graded Quiz: Importing Datasets

Q1. What do we want to predict from the dataset?

- price
- colour
**make**

Q2. What library is primarily used for machine learning

- scikit-learn
- Python
**matplotlib**

Q3. We have the list headers_list:

headers_list=['A','B','C']

We also have the data frame df that contains three columns, what is the correct syntax to replace the headers of the data frame df with values in the list **headers_list?**

**df.columns = headers_list**- df.head()
- df.tail
**()**

Q4. What attribute or method will give you the data type of each column?

- describe()
- columns
**dtypes**

Q5. How would you generate descriptive statistics for all the columns for the data frame **df?**

- df.describe()
**df.describe(include = “all”)**- df.info

#### Practice Quiz: Dealing with Missing Values in Python

Q1. How would you access the column ”body-style” from the data frame **df?**

**df[ “body-style”]**- df==”bodystyle”

Q2. What is the correct symbol for missing data?

**nan**- no-data

#### Practice Quiz: Data Formatting in Python

Q1. How would you rename the column “city_mpg” to “city-L/100km”?

**df.rename(columns={”city_mpg”: “city-L/100km”}, inplace=True)**- df.rename(columns={”city_mpg”: “city-L/100km”})

#### Practice Quiz: Data Normalization in Python

Q1. Which of the following is the correct formula for z -score or data standardization?

Q2. What is the maximum value for feature scaling?

**1**

#### Practice Quiz: Turning categorical variables into quantitative variables in Python

Q1. Consider the column ‘diesel’; what should the value for Car B be?

**1**

#### Graded Quiz: Data Wrangling

Q1. What task do the following lines of code perform?

```
avg=df['horsepower'].mean(axis=0)
df['horsepower'].replace(np.nan, avg)
```

- calculate the mean value for the
**‘horsepower’**column and replace all the NaN values of that column by the mean value - nothing; because the parameter
**inplace**is not set to true **replace all the NaN values with the mean**

Q2. Consider the dataframe df; convert the column df[“city-mpg”] to df[“city-L/100km’] by dividing 235 by each element in the column ‘city-mpg’.

Q3. What data type is the following set of numbers?** 666, 1.1,232,23.12**

Q4. Consider the two columns ‘horsepower’, and ‘horsepower-binned’; from the data frame **df**; how many categories are there in the ‘horsepower-binned’ column?

**3**

#### Week 3 – Practice Quiz: Descriptive Statistics

Q1. Consider the following scatter plot; what kind of relationship do the two variables have?

**positive linear relation**ship- negative linear relationship

Q2. Which of the following tables representing a number of drive wheels, body style, and the price is a Pivot Table?

### Graded Quiz: Exploratory Data Analysis

Q1. Consider the dataframe **df**; what method provides the summary statistics?

**describe()**- head()
- tail()

Q2. If we have 10 columns and 100 samples, how large is the output of **df.corr()**?

- 10 x 100
**10×10**- 100×100

Q3. If the p-value of the Pearson Correlation is 1, then …

- The variables are correlated
- The variables are not correlated
**None of the above**

Q4. Consider the following dataframe:

`1df_test = df[['body-style', 'price']]`

The following operation is applied:

`1df_grp = df_test.groupby(['body-style'], as_index=False).mean()`

What are the resulting values of:** df_grp[‘price’]**?

**The average price for each body style**- The average price
- The average body style

Q5. What is the Pearson Correlation between variables X and Y, if X=-Y?

**-1**- 1
- 0

##### Data Analysis with Python Coursera Course Review:

In our experience, we suggest you enroll in the Data Analysis with Python Course and gain some new skills from Professionals completely free and we assure you will be worth it.

Data Analysis with Python course is available on Coursera for free, if you are stuck anywhere between quiz or graded assessment quiz, just visit Networking Funda to get Data Analysis with Python Coursera Quiz Answers.

##### Conclusion:

I hope this Data Analysis with Python Coursera Quiz Answers would be useful for you to learn something new from this Course. If it helped you then don’t forget to bookmark our site for more Coursera Quiz Answers.

This course is intended for audiences of all experiences who are interested in learning about new skills in a business context; there are no prerequisite courses.

Keep Learning!

**All Quiz Answers of multiple Specializations or Professional Certificates programs**:

Course 1: What is Data Science?

Course 2: Tools for Data Science

Course 3: Data Science Methodology

Course 4: Python for Data Science, AI & Development

Course 5: Python Project for Data Science

Course 6: Databases and SQL for Data Science with Python

Course 7: Data Analysis with Python